Institute of Software Technology " Grazm

Killing Bugs in a Black Box with
Model-based Mutation Testing

Bernhard K. Aichernig

Institute of Software Technology
Graz University of Technology, Austria

MT CPS Workshop
Vienna, 11 Apr 2016

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

1/64

Institute of Software Technology " Grazm

Acknowledgements

Joint work with

J. Auer - H. Brandl - W. Herzner - E. Jobstl - W. Krenn - R. Korosec -
F. Lorber - D. Nickovic - A. Rosenmann - R. Schlick - B.V. Schmidt -
M. Tappler - S. Tiran

Strong Collaboration:
Since 2008 with AIT
Since 2011 with AVL

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

2/ 64

Ty

Institute of Software Technology

Projects

Past:
» CREDO: FP6, MBT of distributed systems
» MOGENTES: FP7, MBT of embedded systems, mutation testing,
qualitative reasoning for testing hybrid systems
» TRUFAL: national, scalability of test-case generators via symbolic
analysis
» MBAT: FP7, integration of methods and tools, MBT +
consistency checking
Ongoing:
» CRYSTAL: FP7, integration of tools, MBT + requirements
engineering
» TRUCONF: national, MBT + non-functional requirements +
systems of systems

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

3/ 64

Institute of Software Technology " Grazm

Agenda

Model-based Mutation Testing
Real-Time Systems
Hybrid Systems

vV v . v v

Discrete Systems

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

4/ 64

Institute of Software Technology " Grazm

Mutation Testing |

Step 1: Create mutants

)| \|utation Process

S

Source Code Mutant

Mutation Operator

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

5/ 64

Institute of Software Technology " Grazm

Mutation Testing Il

Step 2: Try to kill mutants

A test case kills a mutant if its
run shows different behaviour.

Quality of tests:
How many mutants survived? [Lipton71, Hamlet77, DeMillo et al.78]

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

6/ 64

Institute of Software Technology " Grazm

Objective

Don't write test cases,

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

7/ 64

Institute of Software Technology " Grazm

Objective

Don't write test cases,

generate them!

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
7] 64

Institute of Software Technolo

Ty

Timed Automata Model of a Car Alarm System

unlock?
g:=0

e <300

e<30
unlock?
g9:=0

soundOff!

flashOff!

e==30
soundOff!

e ==300
soundOff!

O

flashOff!

» Car alarm system model

Killing Bugs in a Black Box with Model-based Mutation Testing
8/ 64

' B.K. Aichernig

Institute of Software Technolo

Ty

Timed Automata Model of a Car Alarm System

e <300

0 unlock?

S

e<30
unlock?
9:=0 'soundOn!
e<0
|
soundOff! lashOn!
e<0

e==
armedOff!

flashOff!

e==30
soundOff!

e ==300
soundOff!

b

flashOff!

lunlock? (mutation)

» Car alarm system model
» and a mutation representing a
fault

> leading to non-conformance
representing an observable
failure

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

8/ 64

Institute of Software Technolo " Grla!-

Timed Automata Model of a Car Alarm System

g<o0 unlock? e < 300

O g:=0 » Car alarm system model

ook somaor » and a mutation representing a
9:=0 'soundOn! fault
<0 .
¢ > leading to non-conformance
4Off! flashOn! e == 300 .
soundOfft Soundoff! representing an observable
failure

> resulting in a test case
triggering this fault

)

flashOff!

lunlock? (mutation)

flashOff!

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

8/ 64

Institute of Software Technolo " Grla!-

Timed Automata Model of a Car Alarm System

g<o0 unlock? e < 300

O g:=0 » Car alarm system model

ook somaor » and a mutation representing a
9:=0 'soundOn! fault
<0 .
¢ > leading to non-conformance
4Off! flashOn! e == 300 .
soundOfft Soundoff! representing an observable
failure

> resulting in a test case
< triggering this fault

<> > and propagating it to a visible
failure
flashOff!

lunlock? (mutation)

flashOff!

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

8/ 64

Institute of Software Technolo " Grla!-

Timed Automata Model of a Car Alarm System

g<0 unlock? e <300

O g:=0 » Car alarm system model

ook somaor » and a mutation representing a
9:=0 'soundOn! fault
<0 .
¢ > leading to non-conformance
4Off! flashOn! e == 300 .
soundOfft Soundoff! representing an observable
failure

> resulting in a test case
< triggering this fault

<> > and propagating it to a visible
failure

flashOff!

What is a failure?

lunlock? (mutation)

flashOff!

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

8/ 64

Institute of Software Technology

Ty

Fault-Propagation in Models

Abstract 5-place buffer model:

(Buffer_StateMachine N
(N o (N =
Empty Enqueue / Normal Enqueue [n=4]/ Full
n=n+1 n=n+1
/entry /entry
OpaqueBehavior OpaqueBehavior
setEmptyOn setFullOn
/exit OpaqueBehavionl Dequeue [n=1]/ /exit OpaqueBehaviol
setEmptyOff n=n-1 EZ?:elue / setFullOff
U 2
Dequeue [n>1]/ Enqueue [n<4]/
n=n-1 n=n+1
- J

Counter variable n is internal!

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

9/ 64

Institute of Software Technology ﬂ‘lﬁ-rla'!-
Fault-Propagation in Models

Let's inject a fault:

(Buffer_StateMachine h
" Normal) =
Empty Enqueue / Normal Enqueue [n=4]/ Full
n=n+1 n=n
/entry /entry
OpaqueBehavior OpaqueBehavior
setEmptyOn setFullOn
/exit OpaqueBehaviorl Dequeue [n=1]/ /exit OpaqueBehaviol
setEmptyOff e Siﬂfi”e / setFullOff
(. o
Dequeue [n>1]/ Enqueue [n<4]/
n=n-1 n=n+1
S

How does this fault propagate?

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing
10 / 64

Institute of Software Technology ﬂ‘lﬁ-rla'!-
A Good Test Case

... triggers this fault and propagates it to a (visible) failure:

(Buffer_StateMachine)
(N e TN =
Empty Enqueue / Normal Enqueue [n=4]/ Full
n=n+1 n=n
/entry /entry
OpaqueBehavior OpaqueBehavior
setEmptyOn setFullOn
/exit OpaqueBehaviorl Dequeue [n=1]/ /exit OpaqueBehavio
setEmptyOff n=?1—1 E:?‘Lielue / setFullOff
N _
Dequeue [n>1]/ Enqueue [n<4]/
n=n-1 n=n+1
-

(IsetEmptyOn, ?Enqueue, !setEmptyOff, 7Enqueue, ?Enqueue, ?Enqueue,
7Enqueue, !setFullOn, ?Dequeue, !setFullOff, ?Enqueue, !5etFuIIOn>

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing
11 / 64

Institute of Software Technology " Grazm

Model-Based Testing

Test Case Generator

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Testing

_>

Test Case Generator

-

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Testing

_>

Test Case Generator

Abstract Test Case

Y

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Testing

_>

Test Case Generator

Abstract Test Case

Y

SUT 4—»@—» pass / fail

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Testing
% — Model

if conforms

Test Case Generator

Abstract Test Case

Y

suT <—>@—> then pass

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Testing
% — Model

if =conforms

Test Case Generator

Abstract Test Case

Y

SuT 4—»@—» then pass/fail

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Mutation Testing

Model Mutation
Tool

Test Case Generator:
Conformance Checker

Abstract Test Case

Y

SUT 4—»@—»

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

TU

Institute of Software Technology Grazm

Model-Based Mutation Testing

—— Model itz e Model Mutant
Tool

Test Case Generator:
Conformance Checker

Abstract Test Case

Y

SUT 4—»@—»

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

TU

Institute of Software Technology Grazm

Model-Based Mutation Testing

—— Model itz e Model Mutant
Tool
A

Test Case Generator:
Conformance Checker

Abstract Test Case

Y

SuT 4—»@—» then pass/fail

if =conforms

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Mutation Testing

—— Model itz e Model Mutant
Tool
A

Test Case Generator:
Conformance Checker

Abstract Test Case

Y

SUT 4—»@—» then fail

if =conforms

if conforms

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology " Grazm

Model-Based Mutation Testing

then — conforms

%*Wi

Test Case Generator:
Conformance Checker

Abstract Test Case

Y

SUT 4—»@—» then fail

Mutation
Tool

Model Mutant

if =conforms

if conforms

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

12/ 64

Institute of Software Technology

Ty

MoMuT

MoMuT Tools

> is a family of tools implementing Model-based Mutation Testing.

> is jointly developed and maintained by AIT and TU Graz

» supports different modelling styles:

vV VvV VY VY

MoMuT::
MoMuT::
MoMuT::
MoMuT::
MoMuT::
MoMuT::

UML (UML state machines)

OOAS (OO Action Systems)

QAS (Qualitative Action Systems)

TA (Timed Automata)

TAS (Timed Action Systems)

REQs (Synchronous Requirement Interfaces)

www.momut.org

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing
13 / 64

http://www.momut.org/

Institute of Software Technology " Grazm

Agenda

Model-based Mutation Testing
Real-Time Systems
Hybrid Systems

vV v . v v

Discrete Systems

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

14 / 64

Institute of Software Technology " Grazm

Conformance Relation of Timed Systems

... defines in a testing theory what constitutes a failure.

Definition (Timed input-output conformance — tioco [Krichen& Tripakis09])

Given a timed automaton Model and a Mutant with inputs and outputs
Mutant tioco Model iff

Vo € L(Model) : out(Mutant after o) C out(Model after o)

S ... set of all states Aafterc = {se€S|s s}
So ... initial state elapse(s) = {t>0]s5}
o ... timed trace of labels out(s) = {a€¥o|s 3} Uelapse(s)
Yo ... output labels Out(s) — Uses out(s)
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

15 / 64

Institute of Software Technology " Grazm

tioco and Language Inclusion

start

Theorem ([Krichen&Tripakis09])
L(Mutant) C L(Model) = Mutant tioco Model

T, UYo
Theorem ([Krichen&Tripakis09])
If Model is input-enabled, then
Mutant tioco Model = L(Mutant) C L(Model)
Demonic completion for
deterministic TA
For deterministic TA,
reduce tioco check to language inclusion check (PSPACE-complete).
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

16 / 64

Institute of Software Technology " Grazm

k-Bounded Language Inclusion

» Construct a formula go’;\hAs that is satisfiable if L(A;) € L(As)

» providing a timed trace as withess

k —
PAAs =) .

/\f-‘:l(d’ >0N1<a <|ZE)AIZ1AI<KkK A (delays and actions)
1<i<k A (in i steps)
inita, (Xi, G) A path}q’/’fl(A, D, X;, Cr) A (reach in mutant)
initag (Xs, Cs) A pathy! "' (A4, D, Xs, Cs) A (reach in model)
path'A’;(A, D, X, C/) A ﬁpathlAJS (A, D, Xs, Cs) (failure)

Variable sets:

x' € X ... location at step i

a' € A ... i™ discrete action

d € D .. " time delay

{c',c*"} C C ... clock valuation after i* time and discrete step

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

17 / 64

Institute of Software Technology " Grazm

Experimental Results |

v

Bounded language inclusion check for deterministic Uppaal TA

v

Implemented in Scala calling SMT solver Z3

v

Car alarm system characteristics: deterministic,
» 5 clock variables, 16 locations, 25 transitions.

v

8 mutation operators — 1,320 mutants

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

18 / 64

Institute of Software Technology " Grazm

Experimental Results |

v

Bounded language inclusion check for deterministic Uppaal TA

v

Implemented in Scala calling SMT solver Z3

v

Car alarm system characteristics: deterministic,
» 5 clock variables, 16 locations, 25 transitions.

v

8 mutation operators — 1,320 mutants
Overall runtime: 30 minutes (k = 12)

v

Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min
12 1.4s 1.1s 33s 0.07s

Runtime details

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

18 / 64

Institute of Software Technology " Grazm

Timed Action Systems

1 types{
2 State =[... | Flash | FlashSound | Silent | SwitchOffAlarm | ...]; }
3 state{
4 loc : State; }
5 clocks [Real]{ c;d;e;f;g }
6 init {
7 loc := OpenAndUnlocked;}
8 invariant {
9 if loc == Flash then e <=0;
10 if loc == FlashSound then e <= 30;
11 if loc == Silent then e <= 300;
2 ..
13 actions {
14 IsoundOn#1() if loc == Flash && e == 0 then { loc := FlashSound; };
15
16 IsoundOff#1() if loc == FlashSound && e == 30 then { loc := Silent ; };
17
18 ?unlock#6() resets g if loc == FlashSound && e < 30 then { loc := SwitchOffAlarm; };
19 ..
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

19 / 64

Institute of Software Technology " Grazm

Symbolic Execution of Timed Action Systems

- o path conditions ... blue
@ pem e o bolic (clock d
Ge={e—d,..} symbolic (clock) states .. .re
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

Institute of Software Technology " Grazm

Symbolic Execution of Timed Action Systems

o path conditions ... blue
Z:; f(: > d, symbolic (clock) states ... red

IsoundOn

@ pc = pc A Flash = Flash
q = {loc — FlashSound, ...}

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

Institute of Software Technology " Grazm

Symbolic Execution of Timed Action Systems

o path conditions ... blue
Z:; f(: > d, symbolic (clock) states ... red

IsoundOn

@ pc = PE A Flash—Frash

q = {loc — FlashSound, ...}

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

Institute of Software Technology " Grazm

Symbolic Execution of Timed Action Systems

. path conditions ... blue
pc = pc

G —={e— d,.. .} symbolic (clock) states ... red
IsoundOn

pc = pc

q = {loc — FlashSound, ...}
delay(d)

@ pc = pE A Flash = Flash — d +d < 30 A . ..
gc={e— d+d,...}

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

Institute of Software Technology " Grazm

Symbolic Execution of Timed Action Systems

. path conditions ... blue
ZCC; f§ > d, symbolic (clock) states ... red
IsoundOn

pc = pc
q = {loc — FlashSound, ...}

delay(d)

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

Institute of Software Technology " Grazm

Symbolic Execution of Timed Action Systems

. path conditions ... blue
pc = pc

G ={em d,..} symbolic (clock) states ... red
IsoundOn

pc = pc

q = {loc — FlashSound, ...}
delay(d)

=pcAd+d<30
={e— d+d,...}

IsoundOff

pc
dc

?unlock

pc=pcAd+d<30 @ pc=pcAd+d=30
gc = {9 — 0} q = {loc — Silent}
q = {loc — SwitchOffAlarm}
delay(d") delay(d")
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

Institute of Software Technology " Grazm

Symbolic Execution of Timed Action Systems

path conditions ... blue

e Z:i ff; —d, . symbolic (clock) states ... red
IsoundOn
pc = pc
q = {loc — FlashSound, ...}
delay(d)

pc=pcAd+d< 30
ge={e—d+d, ...}

IsoundOff

?unlock

pc=pcAd+d<30 a pc=pcAd+d=30
gc = {9 — 0} q = {loc — Silent}
q = {loc — SwitchOffAlarm}

delay(d") delay(d")

Provides all symbolic timed traces through model!

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

20 / 64

Institute of Software Technology " Grazm

Conformance Checking via Symbolic Execution

» Bounded implicit product graph exploration
» Simultaneous symbolic execution of all model traces

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

21/ 64

Institute of Software Technology ﬂ‘lﬁ-rla!-
Conformance Checking via Symbolic Execution

» Bounded implicit product graph exploration
» Simultaneous symbolic execution of all model traces
» Non-conformance checks (stioco) of the form:

dqri € ModelStates
—_————

all symbolic states after current trace

p CQﬁu/
N——

state reachable (model)

pCq - - . path condition of symbolic state g

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
21/ 64

Institute of Software Technology ﬂ‘lﬁ-rla!-
Conformance Checking via Symbolic Execution

» Bounded implicit product graph exploration
» Simultaneous symbolic execution of all model traces
» Non-conformance checks (stioco) of the form:

Jgr € ModelStates, I\ € Observations :
———

all symbolic states after current trace

A \/ pcs A guardsy[states] | A

pCQfdl/
Y s € MutantStates

state reachable (model)

observation possible (mutant)

- \/ pcq A guardsy[stateg]
q € ModelStates

observation not possible (model)

pCq - - . path condition of symbolic state g

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
21/ 64

Institute of Software Technology " -IG-rla!-

Experimental Results Il

v

Symbolic execution tioco check for deterministic Timed Action
Systems

v

Implemented in Scala calling SMT solver Z3
Car alarm system characteristics: deterministic,
» 5 clock variables, 16 locations, 25 transitions.

v

v

8 mutation operators — 986 mutants

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

22/ 64

Institute of Software Technology " Grazm

Experimental Results |l

» Symbolic execution tioco check for deterministic Timed Action
Systems
» Implemented in Scala calling SMT solver Z3
» Car alarm system characteristics: deterministic,
» 5 clock variables, 16 locations, 25 transitions.
» 8 mutation operators — 986 mutants
» Overall runtime: 27.5 minutes (k = 12)
Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min
12 1.4s 1.1s 33s 0.07s 1.7s 0.02s 38.83s ~0s
Runtime details
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

22] 64

Ty

Institute of Software Technology

Experimental Results IlI

950 unlock?

» Symbolic tioco checker also for O =t O
non-deterministic models ;

» Car Alarm System: silent transition
with non-deterministic delay

e ==300

soundofft soundOff!

» Plus underspecification in switching
on alarm

950 S0 ynoc

F<o egz«EB

flashOfft

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

23/ 64

Institute of Software Technology

Ty

Experimental Results IlI

» Symbolic tioco checker also for
non-deterministic models

» Car Alarm System: silent transition

with non-deterministic delay

» Plus underspecification in switching

on alarm

» 3 equivalent mutants timed out after

950 unlock? e <300

O
>

soundofft

10min 9<0 4SO ook F<0 e<3
Depth Symbolic Execution
Mean Median Max Min
12 0.79s 0.06s 360.84s ~O0s

e ==300
soundOff!

O

flashOfft

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

23/ 64

Institute of Software Technology " Grazm

Experimental Results Il

950 unlock? e <300

» Symbolic tioco checker also for O = f)
non-deterministic models e (O =wor

» Car Alarm System: silent transition
with non-deterministic delay

e ==300

5555 soundoff!

» Plus underspecification in switching
on alarm

» 3 equivalent mutants timed out after
10min

flashOfft

Depth Symbolic Execution
Mean Median Max Min
12 0.79s 0.06s 360.84s ~ 0s

. and the bounded model checking?

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

23/ 64

Institute of Software Technology " Grazm

Bounded Determinisation of Timed Automata

start

coffee

BREWING 1 IDLE
refund
x < 4

l<x<2

{X} EMPTY
x=2

GRAINING HEATING

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

24] 64

Institute of Software Technology " Grazm

Bounded Determinisation of Timed Automata

start

coffee

BREWING 1 IDLE
refund
x < 4 H

unfolding
l<x<2 _—

{X} EMPTY
x=2

GRAINING HEATING

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

24] 64

Institute of Software Technology " Grazm

Bounded Determinisation of Timed Automata

start

coffee
BREWING 1 IDLE
refund
x <4 H
unfolding
l<x<2 _—
{X} EMPTY
x=2
GRAINING HEATING
coin
{x1} beep
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

24] 64

Institute of Software Technology " -IG-rla!-

Bounded Determinisation of Timed Automata

coffee
BREWING 1
refund
x <4 .
unfolding
l<x<2 _—
{X} EMPTY
x=2
GRAINING HEATING
start
start
coin
beep {3} beep
0<x <3 =2
(0<x <3A
x1<2
=2V —
0<x <3 determinisation
coffee {x2}
2<x < 3A refund
1<xA x1 < 4N
0<x1 —x2 <3A x1—x2 =2
X1 —Xx2 <2 {x3}
{x3}
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
24] 64

Institute of Software Technology " Grazm

Experimental Results IV

» Bounded determinization
— 13,545 locations (depth 12)

— bounded model check fails

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

25 / 64

Institute of Software Technology " Grazm

Experimental Results IV

» Bounded determinization

9:=0

— 13,545 locations (depth 12)
— bounded model check fails

» Partial models!

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

25 / 64

Institute of Software Technology

» Bounded determinization
— 13,545 locations (depth 12)

— bounded model check fails

Ty

Experimental Results IV

» Partial models!

Model D. Bounded Model Checking Symbolic Execution

Mean Median Max Min Mean Median Max Min
Partial 1 8 9.7s 8.0s 85.1s 0.3s 0.28s 0.04s 16.78s ~ 0s
Partial 2 12 1.6s 1.63s 37.3s 0.08s 0.08s 0.03s 2.28s ~ 0s
Complete 12 X X X X 0.79s 0.06s 360.84s ~ 0s

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

25 / 64

Institute of Software Technology " Grazm

Experimental Results V

» Adding data variable and parameters to

» deterministic Car Alarm System with one clock
» 3-digit PIN code for unlocking

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

26 / 64

Ty

Institute of Software Technology

Experimental Results V

» Adding data variable and parameters to

» deterministic Car Alarm System with one clock
» 3-digit PIN code for unlocking

» No negative effects, even with higher digit PIN codes
» Symbolic execution faster with 1 clock (0.24s) than with 5 clocks

(1.7s)
Depth Bounded Model Checking Symbolic Execution
Mean Median Max Min Mean Median Max Min
8 1.46s 0.28s 59.41s 0.12s 0.07s 0.05s 0.82s ~ Os
12 4.12s 0.35s 35.41s 0.13s 0.24s 0.05s 3.67s ~ Os
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
26 / 64

Institute of Software Technology " Grazm

Real-Time Systems Summary

Symbolic execution (SE) seems to perform better, but no clear winner!

» Number of clocks:
» BMC: small impact (was faster in deterministic case)
» SE: high impact
» Non-determinism: is an obstacle for conformance checking

» BMC: state-space explosion — partial models
» SE: lowered performance (40s vs. 6min) — 3 mutants timed out

» Statistical outliers: due to equivalent mutants

» BMC: runtime almost equal
» SE: extreme differences due to optimisations

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

27 / 64

Institute of Software Technology " Grazm

Agenda

Model-based Mutation Testing
Real-Time Systems
Hybrid Systems

vV v . v v

Discrete Systems

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

28 / 64

A Hybrid System: Two Tank System

— P2 i :
G2 out Requirements:
Full » P1 starts pumping, if T2 below
Reserve and T1 is full
- Reserve))]
- >
_§ Empty until T1 is empty or T2 is full
= » P2 is controlled by button
WaterRequest
G1
in =—— > runs if there is water in T2.

> Note: T1 may overflow
Full

Empty

P1, P2 ... water pumps

G1, G2 ... water-level sensors

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

29 / 64

Institute of Software Technology " Grazm

Related Work

» Hybrid Systems
Hybrid Automata (Alur,Courcoubetis,Henzinger,Ho 93)
Action Systems [Back,Kurki-Suonio 83]
Hybrid Action Systems [Ronkko,Ravn,Sere 03]
Qualitative Reasoning [Kuipers 94]
» Testing

» Mutation Testing [Hamlet 77, De Millo et al. 78]

> Input-Output Conformance [Brinksma, Tretmans 92]

vy vy vy

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

30 / 64

Institute of Software Technology " Grazm

Abstraction 1: Action Systems

Modeling the Controller

Controller:

[var PI_running, P2 _running : Bool,
out*, inout* : Real
L]
P1_running := false;
P2 running := false;
out := 0; inout := 0;

do
g1 — P1_running := true; inout := (0, Max]
O
g2 — P1_running := false; inout := 0
g3 — P2_running := true; out := (0, Max]
ga — P2_running := false; out := 0

od

1 WaterRequest, x1, xo
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

31/ 64

Institute of Software Technology " Grazm

Abstraction 1: Action Systems

Modeling the Controller

Controller: Guards:
> g1 =i x < Reserve A
[var PI1_running, P2 _running : Bool, x1 = Full A
out*, inout* : Real =P1 running
L]

P1_running := false;
P2 running := false;
out := 0; inout := 0;

L= P1_running A
(x1 < Empty V xo = Full)

do
g1 — P1_running := true; inout := (0, Max] > g3 =4 WaterRequest A
O =P2_running A
g2 — P1_running := false; inout := 0 X2 > Reserve

— P2 running := true; out := (0, Max] i

g - 9 © 1 > gs =4 P2 running A
ga — P2 running := false; out := 0 (~WaterRequestV

od B xo = Empty)

1 WaterRequest, x1, xo
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

31/ 64

Institute of Software Technology " Grazm

Why Action Systems?

v

Well-suited for embedded systems modeling

v

Action view maps naturally to LTS testing theories
Solid foundation:

> precise semantics
» refinement

v

v

Compositional modeling

v

Many extensions available:

» object-orientation
» hybrid systems

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

32/ 64

Ty

Institute of Software Technology

Hybrid Action Systems

Environment:

[var x1 %, %2 * 1 Real

alt
g — ...
O
with
=(g1 V...) = X = (in — inout)/ A1 A % = (inout — out)/A,
I inout, out

> Roénkks, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoretical Computer Science 290 (2003)
937-973.

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

33 /64

Institute of Software Technology

Ty

Abstraction 2: Qualitative Flows

v-abs.f.t A f.t
max
high
med
B t
zero >
< \
t_| t-abs.f.t H
L —
o iy
o : .y
o : : -y
i FE My
1 |: : Iy
I 2 il
L)1 1 — t
°10 0 >

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

34/ 64

Institute of Software Technology " Grazm

Example Qualitative Flow of Water Tanks

X1 X2
A
Full — Full
~ ~
- N X2 f—1
X1 _-7 N
— \,
- N
——= < Reserve
~ N Pis
- AN =
Empty = i Empty
— > t
P1/P2 OFF e o
P1ON
Ful v OFF ON
@: o © O O O o @ o @
Empty a ¥)—@) X1
@
Zero a
Full
& ® © O ©
Reserve A — N
& ® "2
Empty A

@.
Zero O—0—0—©—©®

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing
35 / 64

Institute of Software Technology " Grazm

Qualitative Reasoning (QR)

v

QR originates from Artificial Intelligence

v

Common sense reasoning about physical systems with possibly
incomplete knowledge.

Ordinary Differential Equations (ODE)
— Qualitative Differential Equations (QDE):

x1 = (in—inout)/A; — d/dt(xq, diffy) A add(diffy, inout, in)
Arithmetic is reduced to sign algebra:

5_1-4 o [+0=[][]
—3%x2=—-6 — [-]x[+]=[-]

v

v

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

36 / 64

Institute of Software Technology " -IG-rla!-

Qualitative Action Systems

[var x1 % x2*: Real
L]
x1:=0;x:=0

alt
g — ...
O

with
(g v...):—
d/dt(x, dlfﬁ) A d/dt(x, difb) A
add(diff>, out, inout) A add(diffy, inout, in)

I inout, out
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

37 / 64

Institute of Software Technology " Grazm

Qualitative Simulation

Scenarios QlldllldllVC
: Initial ? en;,me
values
‘ State graph graph
:Assumpli()ns 7
/ = E[‘ldn.sm(m lll]LJ

Library of
model fragments

» Implementations:
> QSIM (Lisp)
> Garp3 (SWI-Prolog)
» ASIM (GNU-Prolog)

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

38/ 64

Institute of Software Technology " Grazm

Model-based Mutation Testing

Action System Model

]

ioco ... input-output conformance

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

39 / 64

Institute of Software Technology

Ty

Model-based Mutation Testing

Action System Model

Mutants

ioco ... input-output conformance

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

39 / 64

Institute of Software Technology " Grazm

Model-based Mutation Testing

Action System Model JOLTSS

] :

|

Mutants
[]
1oL TSM
ioco ... input-output conformance
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

30 / 64

Institute of Software Technology " Grazm

Model-based Mutation Testing

Action System Model JIOLTS®S
discriminating test

LI
S

"

ioco ... input-output conformance

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

30 / 64

Institute of Software Technology " Grazm

Conformance Checking

» Event-view: labeled actions
» Input and Output Labels

Def. IOCO [Tretmans 96]

Vo € Straces(Model) : out(Mutant after o) C out(Model after o)

out ... outputs labels + quiescence
after ... reachable states after trace

> ioco supports: partial, non-deterministic models

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

70] 64

Ty

Institute of Software Technology
Conformance Checking

» Event-view: labeled actions
» Input and Output Labels

Def. IOCO [Tretmans 96]

Vo € Straces(Model) : out(Mutant after o) C out(Model after o)

out ... outputs labels + quiescence
after ... reachable states after trace

> ioco supports: partial, non-deterministic models

» ioco-checker Ulysses
> implemented in GNU Prolog
» explores discrete actions + qualitative flows
» builds synchronous product modulo ioco
> highly non-deterministic — on-the-fly determinization

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

70 / 64

Institute of Software Technology

Ty

Generating a Testcase: Original Model

System =

I[var
alt
with

O o o o

x1: T1l,x: T2,out,inout: FR,

diff,, diff, : NZP,

p1_running, p2 running, wr : Bool

x; := (0,0); x := (0, 0);

out := (0, 0); inout := (0, 0); wr := false
pl_running := false; p2 running := false
obs pumpl on: g1 — pl_running := true;

inout := (0..Max, 0)

obs pumpl off: g — pl_running := false;

inout := (0, 0)

obs pump2 on: gz — p2_running := true;

out := (0..Max, 0)

obs pump2_off: gs — p2_running := false;

out := (0,0)

ctr water req(X) : gs — wr:= X
“(1V@VgVagVgs): —

add(diff,, out, inout) A add(diffy, inout, in)A
d/dt(x1, diff) A d/dt(x2, diffs)

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

21/ 64

Institute of Software Technology

Ty

Generating a Testcase |I: Mutated Model

System =
I[var

alt

with

O o o o

x1: T1l,x: T2,out,inout: FR,

diffy, diff, : NZP,

p1_running, p2 running, wr : Bool

x; := (0,0); x := (0, 0);

out := (0, 0); inout := (0, 0); wr := false
pl_running := false; p2 running := false
obs pumpl on: g1 — pl_running := true;
inout := (0..Max, 0)

obs pumpl_off: g — pl_running := true;
inout := (0, 0)

obs pump2 on: g3 — p2_running := true;
out := (0..Max, 0)

obs pump2_off: gs — p2_running := false;
out := (0,0)

ctr water req(X) : gs — wr:= X

“(91V VgV aaVgs):i—

add(diff,, out, inout) A add(diffy, inout, in)A
d/dt(x1, diffi) A d/dt(xz, diffy)

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

22/ 64

Institute of Software Technolo " Grla!-

Generating a Testcase Ill: Product Graph

Part of the result of the conformance check
between the original and
the mutated Speciﬁcation_ obs qual([x1:full/inc,x2:zero/std])

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

43 / 64

Ty

Institute of Software Technology

Results
Mut. No. Avg.Time Average No. =
Op. Mutants [s] States Trans. 7 No. Perc.
ASO 10 13.9 64 117 7 3 30%
ENO 6 7.6 68 120 5 1 17%
ERO 20 12.9 62 110 20 0 0%
LRO 13 12.8 93 168 9 4 31%
MCO 16 12.8 70 126 10 6 38%
RRO 12 12.0 40 73 10 2 17%
Total 77 12.0 66 119 61 16 21%
ASO ... Association Shift Operator LRO ... Logical Operator Replacement
ENO ... Expression Negation Operator MCO ... Missing Condition Operator
ERO ... Event Replacement Operator RRO ... Relational Replacement Operator
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

44] 64

Institute of Software Technology " Grazm

Generating a Testcase IV: Linear TC

Selecting one path
for each unsafe state
leading to failure.

obs qual([x1:full/inc,x2:zero/std])

obs qual([x1: ...x2: ...])

obs out_pump2_on

obs qual([x1:empty..full/inc,x2:empty..reserve/dec])

106 (pass)

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

45] 64

Institute of Software Technology " Grazm

Generating a Testcase V: Adaptive TC

A test graph including all paths to a given unsafe state leading to failure.

Qualitative events are internal (not visible).

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

26 / 64

Institute of Software Technology " Grazm

Hybrid Systems Summary

Al meets FM: qualitative reasoning

Requirements — incomplete qualitative models

Model exploration: controller (discrete) + environment (qualitative)
TCG based on mutation testing and ioco conformance checking

vV v v v Yy

Different strategies for selecting test case

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

47] 64

Institute of Software Technology " Grazm

Agenda

Model-based Mutation Testing
Real-Time Systems
Hybrid Systems

vV v . v v

Discrete Systems

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

48 / 64

Institute of Software Technology " Grazm

Discrete Systems: MoMuT::UML

Applications:
» Car Alarm System (Ford)
» Railway Interlocking System (Thales)
» Automotive Meassurement Device: Particle Counter (AVL)

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

49 / 64

Institute of Software Technology " -IG-rla!-

SUT: AVL489 Particle Counter

» One of AVL's automotive
measurement devices

» Measures particle number
concentrations in exhaust gas

» Focus: testing of the control logic

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

50 / 64

Institute of Software Technology " Grazm

SUT: AVL489 Particle Counter

» One of AVL's automotive
measurement devices

» Measures particle number
concentrations in exhaust gas

» Focus: testing of the control logic

» AVL uses virtual test-beds with
simulated devices for integration
and regression testing.

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

50 / 64

Institute of Software Technology " -IG-rla!-

SUT: AVL489 Particle Counter

» One of AVL's automotive
measurement devices

» Measures particle number
concentrations in exhaust gas

» Focus: testing of the control logic

» AVL uses virtual test-beds with
simulated devices for integration
and regression testing.

| e

AL

» We tested a simulation of the
particle counter:

» Matlab Simulink model
compiled to real-time
executable

» Same interface as real
device!

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

50 / 64

Institute of Software Technology

UML Test Model of AVL489

heck,SotPurge, SeiZersPo oty

o=

g Faie 2 |

Pause 0
SetPauso [ot Busy and bt anwal |

0

Send SPUL_state fentry

T —

301 not ccsinstat(Actve: Response_14)
or oclsinSiateAcive
when Busy| | orolsinSutey
e

(Achve Leokage.
afAcive:Zorosas 10)
Pause.

Purging. Sandby. 12)
Leakage_11)

e

[Sestandby [notBusy an ot anual |
SePausd [not Busy and not anwal |

Statntograbaasurement not Busy agd vt Manual

SeiPauss 1ot Busy and ot anwal |

send SINT_state ent

ry
Send StatusBusy; set Busy lexi

sttt st 1

Moasuroment 2
send SGA state fentry

Sotzoropoint [not Busy and

Manual] 0

Standby_1

SetSanaby [t Busy and ot Maral]

Leakage_11
Sond SLEC_state fentry

Purging_Standby_12
Send SPUL_state fentry

Response_t4

send STBY.state fentry
send Statu

Settanial

Jsnd Oftine

SetRemots / sand Onine

send SEGA_state fent

SoRamote

Remote

e

SePurge, Sezeropont

unset Manual entry.

Send StatusBusy; set Busy lexi

ZeroGas_10
send SNGA_state fentry.
send StatusBusy; set Busy lexi isReady

=

)
Loak]geTest ResponseCheck ot oclisinStae(Standty

=t

ooz

=

L2

Stopfegrabieasurement [ot obsiSiatAcve: s

[z om—
R

ate(Standoy_1) oroclsl

cive:Moas

Grazm

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

51/ 64

Institute of Software Technology

Ty

MoMuT ::UML

> Test-case generator of AIT and TU Graz

> Implementing model-based mutation testing for UML state machines

UML model
Papyrus MDT/
Visual Paradigm

T MoMuT::UML
frontend
|
1
UML200AS | .| OOAS2AS
Java Java

backend

Enumerative TCG

Prolog | il

Symbolic TCG

Prolog

SMT Solver
Z3

AS ... Action Systems [Back83]
OOAS ... Object-Oriented Action Systems

Architecture of the MoMuT::UML tool chain

abstract test cases
Aldebaran aut format

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

52 / 64

Ty

Institute of Software Technology

Abstract Test Case of AVL489

Abstract test cases — concrete C#

| obs StatusReady(0) .
NUnit test cases.

gobs SPAU _state(0)

obs Offline(0)

ctr SetStandby(0)
| obs StatusBusy(0)
] obs STBY _state(0)

obs Online(0)

obs StatusReady(30)

ctr StartMeasurement(0)
gobs StatusBusy(0)

obs SMGA _ state(0)
%obs StatusReady(30)

ctr StartIntegralMeasurement(0)

[]
] obs SINT _state(0)
;ctr SetStandby(0) ctr ... controllable event (input)
pass O.Obs STBY_state(0) obs ... observable event (output)
' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
53 / 64

Institute of Software Technolo " Grla!-

Test Execution on Particle Counter

We found several bugs in the SUT:
» Forbidden changes of operating state while busy

» Pause — Standby
» Normal Measurement — Integral Measurement

» Ignoring high-frequent input without error-messages

» Loss of error messages in client for remote control of the device

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

54 / 64

Institute of Software Technology " Grazm

Refinement + ioco Conformance Checking

Refinement:
> state-based

» predicative semantics

Def. Refinement [Hoare & He 98]

Vs,s' : Mutant(s,s’) = Model(s,s")

s ... state before
s’ ... state after execution

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

55 / 64

Institute of Software Technology " Grazm

Refinement + ioco Conformance Checking

Refinement: Input-Output Conformance:
> state-based > event-based
» predicative semantics > io labelled transition systems

Def. Refinement [Hoare & He 98] Def. 10CO [Tretmans 96]

Vs,s' : Mutant(s,s’) = Model(s,s") Vo € traces(Model) :
out(Mutant after o) C out(Model after o)
s ... state before

s' ... state after execution out ... outputs labels + quiescence
after ... reachable states after trace

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

55 / 64

Institute of Software Technology " Grazm

Refinement + ioco Conformance Checking

Refinement: Input-Output Conformance:
> state-based > event-based
» predicative semantics > io labelled transition systems

Def. Refinement [Hoare & He 98] Def. 10CO [Tretmans 96]

Vs,s' : Mutant(s,s’) = Model(s,s") Vo € traces(Model) :
out(Mutant after o) C out(Model after o)
s ... state before

s' ... state after execution out ... outputs labels + quiescence
after ... reachable states after trace

New combined conformance checking:
> Refinement checker searches for faulty state (fast)

> |oco checker looks if faulty state propagates to different observations

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

55 / 64

Ty

Institute of Software Technology

Symbolic Refinement Checking

Is non-refinement reachable?

5,5’ tr,tr' : reachable(s, tr) A Mutant(s,s’, tr,tr') A —=Model(s,s’, tr, tr")

s ... state before

s’ ... states after execution

tr ... trace of labels before

tr' ... trace of labels after execution

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing
56 / 64

Institute of Software Technology " Grla!-

TCG Particle Counter

¥ not conforming
(non-ref. & not ioco)

 conforming unique TCs
(refining) duplicate TCs.
conforming
(non-ref., but ioco)
817
(a) Breakup into conforming and (b) Breakup into unique and
not conforming model mutants. duplicate test cases.

unique test cases [#]

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16

length

(c) Lengths of the unique test cases.

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

57] 64

Institute of Software Technology " Grazm

Fault Propagation

H
(4]
N

500

423
400 -
£
P 300 -
c
8 200 -
g
100 - 44
6 3
0 -
1 2 3 4 5

ioco depth

Figure: Number of steps from fault to failure (ioco depths)

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

58 / 64

Institute of Software Technology

Ty

Run-times

... for combined conformance checking (in min., max. depth 15+5) :

conforming conforming not conforming total
(refining) (non-ref., but ioco) (non-ref. & not ioco)
mutants [#] 189 68 928 1185
> 6.1h 7.7 7.1h 13.3 h
) 1.9 6.8 sec 27 sec 40 sec
ref. check max 4.3 1.8 3.9 4.3
> - 0.7 h 1.7 h 2.4 h
ioco check ¢ - 38 sec 7 sec 7.4 sec
max - 2 27 sec 2
> - - 22.9 22.9
tc constr. ¢ - - 1.5 sec 1.2 sec
max - - 3.7 sec 3.7 sec
> 6.1h 0.9 h 9.2 h 16.2 h
total) 1.9 0.8 0.6 0.8
without logging max 4.3 2.2 4.1 4.3

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

59 / 64

Institute of Software Technology

Ty

Run-times

. comparison to stand-alone ioco check (in min., max. depth 10):

not ioco ioco total

mutants [#] 719 466 1185
> 9.8 h 22.8 h 326 h

L b 0.8 2.9 1.7

time — ioco check max 39 50 50

> 19 - 19

time — tc constr. ¢ 1.6 sec - 1 sec
max 5.8 sec - 5.8 sec
> 10.1 h 22.8 h 329 h

. . 1) 0.8 2.9 1.7

total without logging max 39 55 50

appr. 16h vs. 33h

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

60 / 64

Institute of Software Technology " Grazm

Discrete Systems Summary

» Fault propagation important for test-case design
» [aster test-case generator

» find fault fast (refinement check)
» analyze if fault propagates to failure (ioco check)

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

61/ 64

Institute of Software Technology " Grazm

Discrete Systems Summary

» Fault propagation important for test-case design
» Faster test-case generator

» find fault fast (refinement check)

» analyze if fault propagates to failure (ioco check)
» Optimized refinement check

» incremental SMT solving, state caching

» exploiting the location of mutation

» checking if existing test cases cover next fault

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

61 / 64

Institute of Software Technology " Grazm

Discrete Systems Summary

» Fault propagation important for test-case design
» Faster test-case generator

» find fault fast (refinement check)

» analyze if fault propagates to failure (ioco check)
» Optimized refinement check

» incremental SMT solving, state caching

» exploiting the location of mutation

» checking if existing test cases cover next fault
» Applied at AVL: many bugs found [TAP 2014]

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

61 / 64

Institute of Software Technology " -IG-rla!-

Synchronous Systems — MoMuT::REQs

Contract-based Requirement Interfaces:
» Synchronous assume-guarantee pairs
» Combined via conjunction
» Efficient SMT solving

Application: Airbag Chip (Infineon)

Inputs coin, teabutton, coffeebutton;
Outputs coffee, tea;
Internals paid;

{I} not paid and not coffee and not tea

{R1} assume coin’
guarantee paid’

{R2} assume paid and teabutton’ and not coffeebutton’
guarantee tea’ and not paid’

{R3} assume paid and coffeebutton’ and not teabutton’
guarantee coffee’ and not paid’

{R4} assume teabutton’ and coffeebutton’
guarantee skip

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

62/ 64

Institute of Software Technology

Ty

Synchronous Systems — MoMuT::REQs

Contract-based Requirement Interfaces:
» Synchronous assume-guarantee pairs
» Combined via conjunction
» Efficient SMT solving

Application: Airbag Chip (Infineon)

Inputs coin, teabutton, coffeebutton;

Outputs coffee, tea;

Internals paid;

{I} not paid and not coffee and not tea

{R1} assume coin’
guarantee paid’

{R2} assume paid and teabutton’ and not coffeebutton’

guarantee tea’ and not paid’

{R3} assume paid and coffeebutton’ and not teabutton’

guarantee coffee’ and not paid’
{R4} assume teabutton’ and coffeebutton’
guarantee skip

Bernhard K. Aichernig, Klaus
Hormaier, Florian Lorber, Dejan
Nickovic, Stefan Tiran. Require,
Test and Trace IT, FMICS 2015)

Bernhard K. Aichernig and Dejan
Nickovic and Stefan Tiran.
Scalable Incremental Test-case
Generation from Large Behavior
Models, TAP 2015.

Bernhard K. Aichernig, Klaus
Hormaier, Florian Lorber, Dejan
Nickovic, Rupert Schlick, Didier
Simoneau, Stefan Tiran.
Integration of Requirements
Engineering and Test-Case
Generation via OSLC, QSIC 20144

' B.K. Aichernig

Killing Bugs in a Black Box with Model-based Mutation Testing

62 / 64

Institute of Software Technology " Grazm

Summary

» Model-based Mutation Testing

» Automatically test against anticipated faults
» TCG via conformance checks

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

63 / 64

Institute of Software Technology " Grazm

Summary

v

Model-based Mutation Testing

» Automatically test against anticipated faults
» TCG via conformance checks

Real-Time Systems: Timed Automata

Hybrid Systems: Action Systems + Qualitative Reasoning
Discrete Systems: UML

Synchronous Systems: Assume-Guarantee Contracts

vV v v v

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

63 / 64

Institute of Software Technology " Grazm

Summary

v

Model-based Mutation Testing

» Automatically test against anticipated faults
» TCG via conformance checks

Real-Time Systems: Timed Automata

Hybrid Systems: Action Systems + Qualitative Reasoning
Discrete Systems: UML

Synchronous Systems: Assume-Guarantee Contracts

vV v v v Y

Ongoing projects:
» DSL for easier modelling, performance testing (AVL)
» Event-B refinement checker including sets, maps (Thales)
» Dependable Internet of Things: test-based model learning

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

63 / 64

Ty

Institute of Software Technology

References

Real-Time Systems

> B.K. Aichernig, F. Lorber, M. Tappler: Conformance Checking of Real-Time Models -
Symbolic Execution vs. Bounded Model Checking. Theory and Practice of Formal
Methods 2016: 15-32

> F. Lorber, A. Rosenmann, D. Nickovic, B.K. Aichernig: Bounded Determinization of
Timed Automata with Silent Transitions. FORMATS 2015: 288-304

> B.K. Aichernig, F. Lorber, D. Nickovic: Time for Mutants - Model-Based Mutation
Testing with Timed Automata. TAP 2013: 20-38

Hybrid Systems

» B.K. Aichernig, H. Brandl, E. Jébstl, W. Krenn: Model-Based Mutation Testing of Hybrid
Systems. FMCO 2009: 228-249

> B. K. Aichernig, H. Brandl, W. Krenn: Qualitative Action Systems. ICFEM 2009: 206-225

Discrete Systems

P> B.K. Aichernig, J. Auer, E. Jobstl, R. Korosec, W. Krenn, R. Schlick, B.V. Schmidt:
Model-Based Mutation Testing of an Industrial Measurement Device. TAP 2014: 1-19

> Willibald Krenn, Rupert Schlick, Stefan Tiran, Bernhard K. Aichernig, Elisabeth Jobstl,
Harald Brandl: MoMut: : UML Model-Based Mutation Testing for UML. ICST 2015: 1-8

' B.K. Aichernig Killing Bugs in a Black Box with Model-based Mutation Testing

64 / 64

